标签 大模型 下的文章

产品名: No English - 不学英语 https://chat.openai.com/g/g-kkrKOWa1E-no-english

产品概览: No English - 您的个人化英语学习伙伴

产品定位:
在语言学习的长河中,No English 站在了技术与教育的交汇点,提供了一个创新的、用户友好的英语学习解决方案。我们的平台运用最新的人工智能技术,致力于提升英语学习效率,同时保持学习过程的趣味性和参与度。

核心功能:

  1. 每日单词学习: 我们的系统每天精选实用词汇,配以例句和上下文,确保用户不仅记住单词,而且理解其应用。
  2. 定制化复习计划: 基于先进的记忆算法,No English 会提供个性化的复习计划,帮助用户巩固记忆,减少遗忘。
  3. 每日英语句型: 别名:"每天学点装比词汇😄 ",从日常对话到商务沟通,我们提供广泛的句型训练,以强化用户的实际应用能力。
  4. 学习动力激励: 别名:“今天踏马不想学了😕”,针对学习疲劳的用户,No English 提供及时的正能量和学习建议,激发学习激情。

知识资源库:
No English 配备了一系列的英语学习文件,涵盖商务英语和各类英语测试标准,如TEM-8、CET-4和CET-6,可供用户根据个人需要下载并学习。

技术能力:

  • 网页浏览: 无缝接入互联网资源,支持用户在学习中实时查询和获取信息。
  • DALL·E图像生成: 利用尖端的图像生成技术,为学习内容添加视觉元素,提高记忆点。
  • 代码解释器: 高级代码解释功能,为用户提供编程学习中的实时反馈。

用户动作与互动:
用户询问当日新闻时,会从指定接口请求,本app使用京东的汇聚新闻接口。

使用推荐:
No English 针对希望在移动设备上学习的用户进行了优化设计,特别推荐使用手机应用来体验我们的语音互动特性,这能够为用户提供更加沉浸式的学习环境。 手机端前两天还支持,现在已经不行了

app.jpg
app2.jpg

相信大家或多或少体验过大模型的魅力,有一定门槛的chatGPT(包含各种套壳的chat_bot),还有文心、通义千问等等。我总结有以下小缺陷

  1. 知识库有截止时间,比如GPT当前在21年9月
  2. 生成代码场景需要在本地手动执行、验证,反复贴报错最终得到一份可用的代码
  3. 无法理解私域任务,比如你们公司每天要做服务器安全巡检
  4. 准确度,在一些计算场景会乱答

打个比方大模型是大脑,AI agent给了模型“双手”。常见的autoGPT、babyGPT、本文介绍来自微软的autogen (https://microsoft.github.io/autogen/)
autogen官网.jpg

代码执行
先看效果,“请求https://www.baidu.com 50次,2秒间隔,记录每次的状态码、网络延迟,结果记录下来。并且生成图片,保存到当前目录下”

- 阅读剩余部分 -

近期在尝试大数据在企业内的应用,两个需求:

  • 用户输入自然语言后返回代码模版,最好能够进一步推理
  • 用户输入自然语言返回给定答案,不要扩展

两种方向:向量库+大模型、模型微调。
方向选择.jpg

以下给出openai模型微调的详细过程,目前官方推荐gpt-3.5-turbo,gpt4的微调将在年底推出

  • 数据预处理:准备至少10条数据,质量越高且数量越多,效果越好。如果没有就人工老老实实的标记几十条高质量数据,比大量低质数据更好。格式如下
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}

我的数据源是csv,第一列问题,第二列答案,用以下脚本处理

import pandas as pd
import json


def convert_csv_to_jsonl(input_csv, output_jsonl):
    # Read the CSV file
    df = pd.read_csv(input_csv)

    with open(output_jsonl, 'w', encoding='utf-8') as f:
        for _, row in df.iterrows():
            jsonl_data = {
                "messages": [
                    {"role": "system", "content": "SunSun is an internal knowledge base communication robot."},
                    {"role": "user", "content": row['Generated Questions']},
                    {"role": "assistant", "content": row['source']}
                ]
            }
            f.write(json.dumps(jsonl_data, ensure_ascii=False) + '\n')


# Usage
# convert_csv_to_jsonl('path_to_your_csv_file.csv', 'desired_output_file.jsonl')
if __name__ == "__main__":
    convert_csv_to_jsonl('/Users/jixing/Downloads/export_result0925.csv',
                         '/Users/jixing/Downloads/export_result0925.jsonl')
  • 上传文件至openai
import openai

# 替换你的key
openai.api_key = "sk-40LIdYxxxxxxx"
training_file = openai.File.create(
    file=open("export_result0925.jsonl", "rb"),
    purpose='fine-tune'
)
# 记录文件id,下一步需要使用
print(training_file.id)
  • 开始微调
import openai

# 你的key
openai.api_key = "sk-40LIdYIwxxxxx"

# 刚才的文件id
openai.FineTuningJob.create(training_file="file-0ACDKAM7xxxxxx", model="gpt-3.5-turbo")