2024年1月

需求如下,产品团队高频要求翻译团队给出符合标准的翻译件,比如翻译产品文档,其中又有大量的术语,比如3D结构光、扫码头、主屏、客显屏、立式等(在公司内有统一的标准叫法),使用市面通用的翻译产品需要自己修改。看效果
翻译效果.jpg

原理如图
Retrieval.png

openai负责文档Retrieval,flowise负责功能补充,同时做了一次封装,gradio负责提供展示页面,方便用户交互

gradio_run.py

import gradio as gr
import requests
import json

def call_api(question):
    url = "https://xxxx.com/api/v1/prediction/asdasce1-5a7b-4d9e-9ed6-21a9aaaab2"
    headers = {"Content-Type": "application/json"}
    data = {"question": question}
    response = requests.post(url, headers=headers, data=json.dumps(data))
    return response.json().get("text", "No response text found.")

iface = gr.Interface(
    fn=call_api,
    inputs="text",
    outputs="text",
)

iface.launch()

一直有个需求,企业内私有知识库RAG,“陪产假怎么申请?”,“公司发票抬头是啥?”等问题,解放行政、人事的部分人力。偶然发现钉钉“智能员工”非常契合。零代码开发、配置简单。看效果,支持单聊群聊。目前免费!
RAG-01.jpg
RAG-02.jpg

配置方式,登录钉钉开发者-数字员工,类似flowise编辑langchain的每个环节,别担心,有模板只需要简单修改!在知识库贴钉文档的链接。文档准备需要注意以下几点

  1. 主题、内容紧密相关
  2. 段落清晰,一段文字不超过500字,长文本可以拆成多段
  3. QA优先级最高
  4. 用标准中文,反对“互联网黑话”
  5. 单文件不超10mb
  6. 通义模型基于中文,中文提示词效果更好
  7. 温度尽可能低,0.1

钉钉AI.jpg